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The mimetic finite difference (MFD) methods mimic important properties of 
physical and mathematical models. As a result, conservation laws, solution 

symmetries, and the fundamental identities of the vector and tensor calculus are 
held for discrete models. The existing MFD methods for solving diffusion-type 
problems on arbitrary meshes are second-order accurate for the conservative 
variable (temperature, pressure, energy, etc.) and only first-order accurate for its 
flux. In many physical simulations such as reactive transport in porous media and 
compressible flows, the flux accuracy makes significant impact on evolution of 
conservative quantities. We developed new high-order MFD methods that are 
second-order accurate for both the conservative variable and its flux [1]. These 
methods are well suited for simulations on arbitrary polygonal meshes.

Modelling with arbitrary polygonal meshes has a number of advantages. Such 
meshes allow us to describe accurately small, detailed structures such as tilted 
layers, irregular inclusions, rugged surfaces, and interfaces. The polygonal meshes 
cover the plane more efficiently than triangular meshes, and eventually reduce 
the number of discrete unknowns without loss of accuracy. The locally refined 
meshes, used to improve resolution in regions of interest, are particular examples of 
polygonal meshes with degenerate elements. 

There are a few fundamentally different approaches for increasing the accuracy of 
discretization methods. Finite volume and finite difference methods increase stencils 
of discrete operators, which impose severe restrictions on mesh smoothness. These 
methods are usually applied on smooth meshes and lose accuracy on rough ones. 
The finite element and spectral element methods increase the number of unknowns 
inside each element but impose severe restrictions on the shape of admissible mesh 
elements. To develop new high-order MFD methods, we blend ideas of the finite 
element [2] and the low-order MFD methods [3]. Sample meshes for analysis are 
shown in Fig. 1;  Fig. 2 shows the convergence rates for the low-order and high-
order methods, and Fig. 3 illustrates the degrees of freedom in both methods. 

In our analysis we consider a stationary diffusion problem for the conservative 
variable u and its flux F: 

divF = q,  F = –K∇u. 

In the high-order MFD method, the scalar function u is represented by one 
unknown, its average value, in each mesh element. The flux F (the vector function) is 
represented by two unknowns on each mesh edge, the number which is twice more 
than in the low-order MFD method. 

Similar to the low-order MFD method, the key step in the high-order MFD method 
is the definition of the inner product in the space of discrete fluxes. This inner 
product can also be viewed as a quadrature rule for the integral of a dot-product 
of two continuous fluxes. Since the chosen degrees of freedom are normal fluxes 
on mesh edges, the construction of this inner product is a non-trivial task. Due to 
additivity of integration, this inner product can be defined independently on each 
mesh element. We developed two methods for building elemental inner products 
[1]. 
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Fig. 1.  Sample meshes used in analysis. Both randomly perturbed (left) and 
polygonal (right) meshes are challenging tests for any discretization method. 
The new high-order MFD methods have similar approximation properties on 
both meshes. 
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The first method extends further the ideas of the low-order Kuznetsov-Repin finite 
element method [3]. We divide virtually each polygonal element into triangles and 
use the existing formula for exact integration of linear fluxes on a triangle [4]. The 
virtual triangular partition introduces additional flux unknowns on interior edges. 
Half of these unknowns, 0-th moments of the normal flux, are eliminated using the 
Kuznetsov-Repin approach. The remaining unknowns first-moments are eliminated 
by mimicking integral identities for particular spaces of vector functions. In the 
finite element community this technique is known as the static condensation. The 
method is useful for problems where the flux has to be recovered at some points 
inside a polygonal element. 

The second method was inspired in part by the methods developed in [3]. Only 
boundary data (normals to polygon edges, length of edges, and quadrature rules 
for edge integrals) are used to build the elemental inner product. Since no auxiliary 
triangular partition is required, the proposed method can be easily applied on 
meshes with degenerate polygons, which appear in adaptive mesh refinement 
(AMR) methods, and nonconvex polygons, which appear in moving mesh methods. 

For more information contact Konstantin Lipnikov at lipnikov@lanl.gov.
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Fig. 2.  Convergence rates for the low-order MFD (blue) and 
the new high-order MFD (red) methods on randomly per-
turbed quadrilateral meshes for a manufactured solution. 
Both methods are second-order accurate for the conservative 
variable u. The high-order MFD method is second-order ac-
curate for the flux F, while the low-order MFD method is only 
first-order accurate.

Fig. 3.  Schematic illustration of degrees of freedom in the low-order left, 
and high-order right, MFD methods. One arrow represents the average 
normal flux through the edge. Two close arrows represent the average 
normal flux (0-th moment) through the edge and its first moment. The 
solid circles represent degrees of freedom for the conservative variable. 


